DH-02 A Randomised, Crossover, Non-Inferiority Trial

NMRR-17-2251-38074

- <u>Amanda WeiYin Lim¹</u>, Ju-Ying Ang², Cheng-Hoon Chew¹, Nayyar Hussain³, Houman Ghaemmaghami³, Amar-Singh HSS
 - 1. Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
 - 2. Clinical Research Centre, Raja Permaisuri Bainun Hospital, Ministry of Health Malaysia, Ipoh, Perak, Malaysia
 - 3. M3DICINE, Brisbane, Queensland, Australia
- 🖂 amanda.limwy.crc@gmail.com

Introduction

Stethee[™], a wireless digital stethoscope, was designed to amplify heart sounds, and aid diagnostic analytics via its artificial intelligence module. However, its basic capability in comparison to Littmann[®], the widely used conventional stethoscope, is not known.

Methodology

In this randomised, open-label, two-period crossover, non-inferiority trial, non-specialist doctors with no more than 6 years in practice post-house officer training, were randomly allocated (1:1) to Stethee[™] first group or Littmann® first group to auscultate a set of 10 heart sounds simulated by an auscultation manikin (**Fig. 1**). They were also asked about their preference for stethoscopes in terms of ease of use, audio clarity, and diagnostic accuracy.

The primary endpoint was the % difference of correctly identified heart sounds, with a non-inferiority (NI) margin of 10%.¹ The secondary endpoint was the % difference of correctly identified cardiac diagnoses.

Fig. 1: Crossover design and participant flow

Fig. 2: Stethee[™] versus Littmann® for identification of heart sounds and cardiac diagnoses NI margin

Both heart sounds and cardiac diagnoses intervals lie to the **left of the NI margin**, indicating **non-inferiority**.²

The cardiac diagnoses interval also **does not cross zero**, indicating **superiority** (in addition to non-inferiority).²

Fig. 3: User-rated preference for stethoscope

Results

A total of 207 doctors were screened, of whom 105 were randomised and analysed. The Stethee[™] first group had a larger number of longer serving doctors, compared to the Littmann® first group **(Table 1)**.

Table 1: Characteristics of the study population

	Stethee™ first (n=54)	Littmann ® first (n=51)
Female doctor	59%	61%
≥2 years in practice	69%	51%
Previous Cardiology rotation	6%	6%
Taking postgrad specialist exam	26%	20%

Only **19%** doctors rated Stethee[™] as **easier to use** than Littmann®. However, **53% and 41%** rated Stethee[™] as having **better sound clarity and diagnostic accuracy** than Littmann®, respectively.

Discussion/Conclusion

Stethee[™] is **non-inferior to (not worse than)** Littmann® for identifying heart sounds and cardiac diagnoses. Doctors preferred Stethee[™] for its **audio quality and diagnostic accuracy**, but found it **less user-friendly** than Littmann®. Further evaluation of the diagnostic accuracy of Stethee[™] in specific patient populations will be needed prior to its adoption in clinical practice.

References

- 1. Nielsen T, Mølgaard H, Ringsted C, Eika B. The development of a new cardiac auscultation test: How do screening and diagnostic skills differ?. Med Teach 2010;32(1):56-61.
- 2. Committee for Proprietary Medicinal Products (CPMP). Points to consider on switching between superiority and non-inferiority. Br J Clin Pharmacol 2001;52:223-8.

Acknowledgements

We wish to thank various people for their contribution to this project; cardiologists Dr Vijay Vengkat and Dr Chan Tze Ming for heart sound validation; Dr Chung Wai Keat and Dr Arvinder Singh Harbaksh Singh for piloting StetheeTM; UniKL RCMP for the auscultation manikin; CREST for facilitating collaboration, research assistants Muhammad Helmi Mohd Nassir and Maizan Idris for administrative support, statistician Fatin for performing the randomisation.